Moran et al., 2022, Nature Microbiology

Microbial Metabolies in the Marine Carbon Cycle

M. A. Moran, E. B. Kujawinski, W. F. Schroer, S. A. Amin, N. R. Bates, E. M. Bertrand, R. Braakman, C. T. Brown, M. W. Covert, S. C. Doney, S. T. Dyhrman, A. S. Edison, A. M. Eren, N. M. Levine, L. Li, A. C. Ross, M. A. Saito, A. E. Santoro, D. Segré, A. Shade, M. B. Sullivan, A. Vardi

View Publication

One-quarter of photosynthesis-derived carbon on Earth rapidly cycles through a set of short-lived seawater metabolites that is generated from the activities of marine phytoplankton, bacteria, grazers, and viruses. Here, we discuss the sources of microbial metabolites in the surface ocean, their roles in ecology and biogeochemistry, and approaches that can be used to analyse them from chemistry, biology, modelling and data science. Although microbial-derived metabolites account for only a minor fraction of the total reservoir of marine dissolved organic carbon (DOC), their flux and fate underpins the central role of the ocean in sustaining life on Earth. 

Moran et al., 2022, Limnology and Oceanography

The Ocean’s Labile DOC Supply Chain

M. A. Moran, F. X. Ferrer-González, H. Fu, B. Nowinski, M. Olofsson, M. A. Powers, J. E. Schreier, W. F. Schroer, C. B. Smith, and M. Uchimiya

View Publication

Microbes of the surface ocean release, consume, and exchange labile metabolites at time scales of minutes to days. The details of this important step in the global carbon cycle remain poorly resolved, largely due to the methodological challenges of studying a diverse pool of metabolites that are produced and consumed nearly simultaneously. In this perspective, a new compilation of published data builds on previous studies to obtain an updated estimate of the fraction of marine net primary production that passes through the labile dissolved organic carbon (DOC) pool. In agreement with previous studies, our data mining and modeling approaches hypothesize that about half of ocean net primary production is processed through the labile DOC pool. The fractional contributions from three major sources are estimated at 0.4 for living phytoplankton, 0.4 for dead and dying phytoplankton, and 0.2 for heterotrophic microbes and mesoplankton.

Olofsson et al., 2022, ISME Communications

Growth-Stage Related Shifts in Diatom Endometabolome Composition Set the Stage for Bacterial Heterotrophy

M. Olofsson, F. X. Ferrer-González, M. Uchimiya, J. E. Schreier, N. R. Holderman, C. B. Smith, A. S. Edison, M. A. Moran

View Publication

Phytoplankton-derived metabolites fuel a large fraction of heterotrophic bacterial production in the global ocean, yet methodological challenges have limited our understanding of the organic molecules transferred between these microbial groups. In an experimental bloom study consisting of three heterotrophic marine bacteria growing together with the diatom Thalassiosira pseudonana, we concurrently measured diatom endometabolites (i.e., potential exometabolite supply) by nuclear magnetic resonance (NMR) spectroscopy and bacterial gene expression (i.e., potential exometabolite uptake) by metatranscriptomic sequencing. Twenty-two diatom endometabolites were annotated, with nine increasing in internal concentration in the late stage of the bloom, eight decreasing, and five showing no variation through the bloom progression. Some metabolite changes could be linked to shifts in diatom gene expression, as well as to shifts in bacterial community composition and their expression of substrate uptake and catabolism genes. Yet an overall low match indicated that endometabolome concentration was not a good predictor of exometabolite availability, and that complex physiological and ecological interactions underlie metabolite exchange. Six diatom endometabolites accumulated to higher concentrations in the bacterial co-cultures compared to axenic cultures, suggesting a bacterial influence on rates of synthesis or release of glutamate, arginine, leucine, 2,3-dihydroxypropane-1-sulfonate, glucose, and glycerol-3-phosphate. Better understanding of phytoplankton metabolite production, release, and transfer to assembled bacterial communities is key to untangling this nearly invisible yet pivotal step in ocean carbon cycling.

Nowinski and Moran, 2021, Nature Microbiology

Niche Dimensions of a Marine Bacterium are Identified Using Invasion Studies in Coastal Seawater

B. Nowinski, M. A. Moran

View Publication

Niche theory is a foundational ecological concept that explains the distribution of species in natural environments. Identifying the dimensions of any organism’s niche is challenging because numerous environmental factors can affect organism viability. We used serial invasion experiments to introduce Ruegeria pomeroyi DSS-3, a heterotrophic marine bacterium, into a coastal phytoplankton bloom on 14 dates. RNA-sequencing analysis of R. pomeroyi was conducted after 90 min to assess its niche dimensions in this dynamic ecosystem. We identified ~100 external conditions eliciting transcriptional responses, which included substrates, nutrients, metals and biotic interactions such as antagonism, resistance and cofactor synthesis. The peak bloom was characterized by favourable states for most of the substrate dimensions, but low inferred growth rates of R. pomeroyi at this stage indicated that its niche was narrowed by factors other than substrate availability, most probably negative biotic interactions with the bloom dinoflagellate. Our findings indicate chemical and biological features of the ocean environment that can constrain where heterotrophic bacteria survive.

Uchimiya et al., 2021, ISME Journal

Diel Investments in Metabolite Production and Consumption in a Model Microbial System

M. Uchimiya, W. Schroer, M. Olofsson, A. S. Edison, M. A. Moran

View Publication

Organic carbon transfer between surface ocean photosynthetic and heterotrophic microbes is a central but poorly understood process in the global carbon cycle. In a model community in which diatom extracellular release of organic molecules sustained growth of a co-cultured bacterium, we determined quantitative changes in the diatom endometabolome and the bacterial uptake transcriptome over two diel cycles. Of the nuclear magnetic resonance (NMR) peaks in the diatom endometabolites, 38% had diel patterns with noon or mid-afternoon maxima; the remaining either increased (36%) or decreased (26%) through time. Of the genes in the bacterial uptake transcriptome, 94% had a diel pattern with a noon maximum; the remaining decreased over time (6%). Eight diatom endometabolites identified with high confidence were matched to the bacterial genes mediating their utilization. Modeling of these coupled inventories with only diffusion-based phytoplankton extracellular release could not reproduce all the patterns. Addition of active release mechanisms for physiological balance and bacterial recognition significantly improved model performance. Estimates of phytoplankton extracellular release range from only a few percent to nearly half of annual net primary production. Improved understanding of the factors that influence metabolite release and consumption by surface ocean microbes will better constrain this globally significant carbon flux. 

Ferrer-González et al., 2020, ISME Journal

Resource Partitioning of Phytoplankton Metabolites that Support Bacterial Heterotrophy

Ferrer-González, F. X.,  B. Widner, N. R. Holderman, J. Glushka, A. S. Edison, E. B. Kujawinski, and  M. A. Moran

View Publication

The communities of bacteria that assemble around marine microphytoplankton are predictably dominated by Rhodobacterales, Flavobacteriales, and families within the Gammaproteobacteria. Yet whether this consistent ecological pattern reflects the result of resource-based niche partitioning or resource competition requires better knowledge of the metabolites linking microbial autotrophs and heterotrophs in the surface ocean. We characterized molecules targeted for uptake by three heterotrophic bacteria individually co-cultured with a marine diatom using two strategies that vetted the exometabolite pool for biological relevance by means of bacterial activity assays: expression of diagnostic genes and net drawdown of exometabolites, the latter detected with mass spectrometry (MS) and nuclear magnetic resonance (NMR) using novel sample preparation approaches. Of the more than 36 organic molecules with evidence of bacterial uptake, 53% contained nitrogen (including nucleosides and amino acids), 11% were organic sulfur compounds (including dihydroxypropanesulfonate and dimethysulfoniopropionate), and 28% were components of polysaccharides (including chrysolaminarin, chitin, and alginate). Overlap in phytoplankton-derived metabolite use by bacteria in the absence of competition was low, and only guanosine, proline, and N-acetyl-D-glucosamine were predicted to be used by all three. Exometabolite uptake pattern points to a key role for ecological resource partitioning in the assembly marine bacterial communities transforming recent photosynthate.

Fu et al., 2020, Proceedings of the National Academy of Sciences

Ecological Drivers of Bacterial Community Assembly in Synthetic Phycospheres

Fu, H., M. Uchimiya, J. Gore, and M. A. Moran

View Publication

In the nutrient rich region surrounding marine phytoplankton cells, heterotrophic bacterioplankton transform a major fraction of recently fixed carbon through the uptake and catabolism of phytoplankton metabolites. We sought to understand the rules by which marine bacterial communities assemble in these nutrient-enhanced phycospheres, specifically addressing the role of host resources in driving community coalescence. Synthetic systems with varying combinations of known exometabolites of marine phytoplankton were inoculated with seawater bacterial assemblages, and communities were transferred daily to mimic the average duration of natural phycospheres. We found that bacterial community assembly was predictable from linear combinations of the taxa maintained on each individual metabolite in the mixture, weighted for the growth each supported. Deviations from this simple additive resource model were observed, but also attributed to resource-based factors via enhanced bacterial growth when host metabolites were available concurrently. The ability of photosynthetic hosts to shape bacterial associates through excreted metabolites represents a mechanism by which microbiomes with beneficial effects on host growth could be recruited. In the surface ocean, resource-based assembly of host-associated communities may underpin the evolution and maintenance of microbial interactions and determine the fate of a substantial portion of Earth’s primary production. 

Fu et al., 2020, Microbiology Resource Announcements

Genome sequences and metagenome-assembled genome sequences of microbial communities enriched on phytoplankton exometabolites

Fu, He, C. B. Smith, S. Sharma, and M. A. Moran

View Publication

We report 11 bacterial draft genome sequences and 38 metagenome-assembled genomes (MAGs) from marine phytoplankton exometabolite enrichments. The genomes and MAGs represent marine bacteria adapted to the metabolite environment of phycospheres, organic matter-rich regions surrounding phytoplankton cells, and are useful for exploring functional and taxonomic attributes of phytoplankton-associated bacterial communities.

Kiene et al., 2019, Geophysical Research Letters

Unprecedented DMSP Concentrations in a Massive Dinoflagellate Bloom in Monterey Bay, CA

Kiene, R. P., B. Nowinski, K. Esson, C. Preston, R. Marin III., J. Birch, C. Scholin, J. Ryan, and M. A. Moran

View Publication

The organic sulfur compound dimethylsulfoniopropionate (DMSP) is synthesized by numerous species of marine phytoplankton, and its volatile degradation products are a major source of biogenic sulfur to the atmosphere. A massive bloom of the dinoflagellate Akashiwo sanguinea occurred in Monterey Bay, CA, USA,in the fall of 2016 and led to exceptionally high seawater DMSP concentrations that peaked at 4240 nM. Bacterial consumption rates showed that only a small fraction of the DMSP standing-stock flowed through the dissolved DMSP pool per day, contributing to the high DMSP concentrations and creating conditions conducive to production of dimethylsulfide (DMS). Conservative calculations of DMS yield from this persistent A. sanguinea bloom suggest substantial regional-scale inputs of DMS-sulfur to the atmosphere. Other recently reported major coastal blooms of A. sanguinea, along with indications that this species may benefit from climate change conditions, reveal a mechanism that could alter oceanic contributions to atmospheric sulfur pools.

Moran and Durham, 2019, Nature Reviews Microbiology

Sulfur Metabolites in the Pelagic Ocean

Mary Ann Moran and Bryndan P. Durham

View Publication

Marine microbes play crucial roles in Earth’s element cycles through the production and consumption of organic matter. One of the elements whose fate is governed by microbial activities is sulfur, an essential constituent of biomass and a critical player in climate processes. Already well-studied in the ocean in its inorganic forms, organic sulfur compounds are now emerging as important chemical links between marine phytoplankton and bacteria. The high concentration of inorganic sulfur in seawater, which can be readily reduced by phytoplankton that are not limited for energy, provides an easy source of sulfur for biomolecule synthesis. Mechanisms such as exudation and cell lysis release these phytoplankton-derived sulfur metabolites into seawater, from which they are rapidly incorporated by marine bacteria and archaea. Energy-limited bacteria use scavenged sulfur metabolites as substrates or for the synthesis of vitamins, co-factors, signaling compounds, and antibiotics. Here we review current knowledge of the sulfur metabolites released into and taken up from the marine dissolved organic matter pool by microbial producers and consumers, and the ecological links facilitated by their diversity in structures, oxidation states, and chemistry.